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ABSTRACT

Let ' be the dual of a Countably Hilbert nuclear space and

W be a F'-Wiener process. In this work we construct

stochastic integrals and multiple Wiener integrals of operator

valued processes with respect to Wt  The Wiener decomposition

of the space of 4'-valued nonlinear functionals of Wt is

established. We also obtain multiple stochastic integral

expansions and representations of ,)'-valued nonlinear func-

tionals of Wt as operator valued stochastic integrals of Ito

type.

.,

MIS 1980 subject classification. Primary ,60105, Secondary , -.16SI

Key words and phrases. MuLtpte integrat, homogeneous chaos,

nontineat functionat, nuceeat space vaeued proce.s, stochastic

integrtat, 4epresentat-on o6 squate integtabte mattngaI .
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1. INTRODUCTION AND NOTATION

Stochastic processes taking values in duals of Countably

Hilbert nuclear spaces have been considered in the works

of Ito [9,101, Holley and Stroock [61, Dawson and Salchi

12], and Shiga and Shimizu [181 among others. In most of

these papers, the nuclear space considered is S'(1Rd), the

space of tempered distributions. However,in several prac-

tical problems, e.g. those occurring in neurophysiology,

it is not possible to fix in advance the space in which

the stochastic processes take their values, as pointed out

by Kallianpur and Wolpert [121. Throughout this work we

will assume that 41 is a Countably ltilbert nuclear space

(CHNS) as defined in the work of the last named authors in

the following manner: Suppose a strongly continuous semi-

group (Tt)t > 0 given on a Hilbert space 110 (that can he

taken as H= L2 (X,dr) for some a-finite measure space

(x,A,r)). The semigroup (Tt)t 0 usually describes the

evolutionary phenomenon being studied, such as the behavior

of the voltage potential of a neuron (see [121). Suppose

that the strongly continuous and self adjoint semigroup

(T t > 0 satisfies the following two conditions:

(i) The resolvent R e-atT dt is compact for each
(i)~ fh reo0ntR 0 t l.i.p

.,.

ai > 0.

(ii) For some r 0 (R) is a Hilbert-Schmidt operator.

(ii) ~ ~ ~ m Fo sm '...:



2.

By the Ifille-Yosida theorem (Tt) has a negative definite

infinitesimal generator -L and H admits a complete ortho-

normal set To }j 1 of eigenvectores of L with eigenvalues

0 4 X, < X2 < ... satisfying

(a + X .) < (r, > 0) (I.'

j=1 J

Set

0 0 -2 r ,
01= 1; (1 + ) (1.2),_

j=1

Denote by <.,o> 0 the inner product in 110 and let

0Zr
4)> 2( < for all r e IR)

o j=1 0
(1.3)

For each r e IR define an inner product <.,.>r and norm

I1" IIon by

<0>= <€,j>o <$,€j>o (1 + 2)jr (1.4)

2 = <,,>(1.5s) :°

II IIr r

and let Hr be the Ililbert space completion of -t in the inner

product <.,.>r. Then D, with the Frechet topology determined

77
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3.

by the family {"'r~r E I of Hilbertian norms is a Countably

Hilbert nuclear space. Let '1 = U 1'r with the inductive
r

limit topology. Then 4' is identified with the dual space

(in the weak topology) to 4F. The following are straight

forward consequences (see [121):

i) ' C H C H C ', J r < s for r < s.

ii) The injection of Hs into Hr is a Hilbert-Schmidt map

if s > r +r.

iii) Let _r = H' denote the strong dual of the Hilbert

space H . Then H-r and Hr are in duality under the

pairing

'1 =E <,.>r <00 .> } e H_ e Hr (1.6)
j=1 r 3 r rH

iv) Finite linear combinations of {1.} are dense in 'D and

in every Hr; moreover {0 1 is an orthogonal

system in each Hr , and then {(1 + X r 1 is a

CONS for Hr.

The spaces S(2d ) and S (Z/ ) of rapidly decreasing functions

on 1R and rapidly decreasing sequences in Z/d respectively,

may be obtained in the above framework (see [ 1 and [171).

%,""""



4.

Throughout this work we will assume that (P,,F,P) is a

complete probability space on which all 4,'-valued stochastic

processes will be defined.

Definition 1.1, A sample continuous 4)-valued stochastic

process W = (It)t > 0 is called a (centered) 4-valued Wiener

process with covariance Q(.,.) if

a) W =-0.
0

*b) W t has independent increments.

c) For each 0 e 'P and t > 0

(eiW~J01Ee [ ) exp(-t/2 Q(0,0))

where Q(.,.) is a continuous positive definite bilinear

(c.p.d. b.) form on D, x 4.

It is easily seen that the system {Vt[0] : e ,,t > 0) is a

Gaussian system of random variables and that if 0, P C F,

then the real valued processes Wt [ 01 and Wt [0] are independent

on non-overlapping increments. Moreover for s, t e IR,

E(W [lW [h 1) = min(s,t) Q(0,0). (1.7)
s t

A

If Q(.,.) - <.,.>o, following Ito [9], W t may be called a

Standard 4'-valued Wiener process.

%* %.%
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Using the Nuclear theorem ([ 51) one can show that if Q is a

c.p.d.b. forn on 41 x P, then there exist r2 > 0 and 02 > 0

such that for 0 e 4,

< 0211 11 (1. 

A regularization technique, as that used in Ito [ 101 , shows

that given a c.p.d.b. form Q on 4) x 4) there exists a 4' -valued

Wiener process Wt with covariance Q. Moreover (see [17, Th.

4.1.11) W t has an H q-valued continuous version for

q > r + r2. Let HQ be the completion of P w.r.t. Q(-,.).
2 Q

Then to every '-valued Wiener process we can associate a

Rigged Hilbert space (51)

4)cH H C' s r 2 . (1.9) 
s HQ s 2

Examples of 4'-valued Wiener processes arising in different

situations are presented in (171.

In Section 2 of this work we present "weak" stochastic

integrals similar to the case of a cylindrical Brownian

motion as presented in Yor [21). We consider real valued

and 4'-valued stochastic integrals including operator valued

proccsses as integraras. It turns out that these integrals

are the ones useful in representing nonlinear functionals

of Wt.
-. . . . . . .

. . . . ... . .. . . . . .. *** V -
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In Section 3 we present real valued and T' -valued multiple

Wiener integrals w.r.t. ht including operator valued

integrands. Our method leads to consider multiple Wiener

integrals with dependent integrators for real valued

integrands of the type considered in the recent works 131 ,

141 and 1 17).

In Section 4 we obtain the Wiener decomposition of the space

L2 (S2;4 , ') of '-valued nonlinear functionals of W Further-

more we consider multiple Wiener integral expansions and

stochastic integral representations for elements in L 2 ( ;'),

as well as representation theorems for ('-valued square

integrable martingales. These results are the F'-valued

analog of the corresponding results for nonlinear functionals

of a real valued Wiener process, as presented for example in

Kallianpur (11, Ch. 61.

An important role in this work is played by a Baire category

argument, first used in the study of nuclear space valued

stochastic processes in Mitoma [151

This work is motivated by the need for developing techniques

for the stud), of nonlinear models which describe the neuro-

physiological applications presented in Kallianpur nnd

Wolpert 1121.

. , -- " , %".V . " . . . - . . .. . . . . . *- ..- *_:* .. : .' " " %. ". ". ." . ;" :'% . '.., , '.'... . . . . . . . . . . . . . ..... .... .".."...-... .".... .. ".".'.',
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2. STOCHASTIC INTEGRALS

dStochastic integrals with respect to S'(R d ) -valued Wiener

processes and E'-valued (E is a CIINS) processes have been

discussed in Ito [9,101 and Mitoma [151 iespectively. They

propose to use the theory of stochastic integration on

Hilbert spaces, as presented for example in Kunita 1131 or

Kuo [141, to construct stochastic integrals for the [H
-q

valued Wiener process Wt . In this section we present weak

stochastic integrals similar to the case of a cylindrical

Brownian motion (c.B.m.). However, we do not work with a

c.B.m. but rather with a V'-Wiener process (a true process)

with an H -valued continuous version for q r+ r

Secondly, if {ek} is any CONS in H then {W }k 1 is

not necessarily a system of independent random variables

(see (1.7)), as it would be required in the case of a c.3.m..

Moreover, we do not assume that the common orthogonal system

in Hr r > 0 {oj j > 1 (the eigenvectors of the infinitesimal

generator L) diagonalizes Q. The case when Q(0,) - o

and then {O)~ 1 diagonalizes Q, has been considered by

Daletskii [11 and Miyahara [161. Nevertheless, the nuclear-

ity of the space ((fA.I[r r > 0) enables us to construct

real valued and '-valued stochastic integrals. We also

make extensive use of the c.p.d.b. form Q and its associated

Rigged lilbert space (1.9).

.o

* -.----
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W

Let Ft  F Ft - oWsO < s < t) with F containing all P-null

sets of F and let FW = F .

Real Valued Stochastic Integrals.- Let K be a real separable

Hilbert space. A function f: 10,-) x n - K is said to belong

to the class M(IV,K) if f is an Ft-adapted measurable (non-

anticipative) function on R + x 92 to K such that for each

t> 0

rt Et 11(f (s) 11I' ds <"

0K

The special classes we will be concerned with are M q q(IJ )

q > T + r2 and M Q = X(W,HQ).

We first define stochastic integrals for elements in Mq.

q*.

Definition 2.1 Let q > r + r For g e M and t > 0 defineq 2" q

the real valued stochastic integral r <gs,dWs> as
fosq

<gs'ds> q i= <gs,ei>q dWs[e i (2.1)

where {e.} i > 1 is a CONS for Hq and the integrals on the

right hand side of (2.1) are ordinary Ito integrals.

Proposition 2.1 Let g e M q > r + r. Then the integral

(2.1) is a well defined element in L2(f ,FWP). If

.. . . .. . . . . . . . . .. .e.,' ''..,.....'....'...'." .'T'.'... ".' ""'.. .".".". .• . "." .. '. -....-. ".. . ". .-. .--. : -..



9.

q, > ri + r2 and g M then this integral is independent

of q or q,. Moreover the following properties are satisfied

for f, g E M q*

a) For a, b e R and t > 0 ,.,

J <afs +bgs,dWs>q =a J <fs'd, s >q b J <gsd 5 >q a.s.o 0 0

b) E(J <gs'dWs> ) = 0 t > 0.

c) E( fo<gs,d~s> q 0fsdIgs>q) =E 0 Q(fsvlgs)dS _.a

tl > 0, t 2 > 0 . -

t rt
d) E( <fsd 5 >q = E Q(fs' fs)ds < E Ilf 11 2 ds < =.

0i go so _-

e) The real valued process { <g , > is an Ft-  '-Jo s t q O >

martingale with associated increasing process

EJ Q(gs,gs)ds.

t
Proof Ile first prove that for t > 0 <gs dW5 > is a well

defined e~ement in L (SI,F' P). Let {ei} i  1 be any CONS

for H q r, + r2 . Then for each t > 0

'Ca.

a:,_

° • - " * . = = ° -o= . *. *.'* *. '.- -. . *.° . V =~= • 4 " -"a.' "-•* ° =

• % " - % % % o . . % .. •.° .' . - ° , . s-- = . . - ..-. * ° .., , * * .' '. ." = ° .. - -
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g(t,.) = E <gt(W) Cj>q e.
j1 u j

and for n, m > 1, using the fact that for 0, eIf the crossIq ,

predictable quadratic variation of It il l and t I l is

< , t Q(W,>) t > 0

we obtain that

E( I-  <gs ej>q dW s[e]) 2

j =m Jo ' q

n n it e"
E E <gse>q <gs,ek>q Q e)dS• '

j--m k=m 0

Then since Q is a c p.d.b. form, using (1.8) we have that '¢

nS 3I N.

E 1 E <g g,e > d g ,e 12

q ks 'k~
j =11

t n nE JQ( x e >qej, d ' <gsee> ee)ds
0 j= < s'q sjq

t n

< i? E Jo 1 <gse.> e.11 2 ds
2q jM q

t n
O0 E >2 )ds - 0 as n,m -,

0 j=m <q

since g eM

J, .4 J, r. N
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T thus f < d1s>q is an element of L2(2,Fl P) defined asThu Io<s saq

the L2(P )-limit of the Cauchy sequence

- ft

{: <gse.> dW sle 1)- .j = l 0 q j n1

The next argument will also show that (2.1) is independent

of the CONS {e.}. i 1 in Hq* Let q, > r, + r2  q1 > q

and { jj 1 be a CONS for Hq . Then 1 IIr2 q < 1q

Hqi C H qCH and W has an H -valued continuous version.
2 r t qii

Hence if g e M n MA

n rt n rt
E( J0 <g e > dWse] -I I <g > d1s ) ' 1.

j= o <sj 1 <gs' q1 s

Et n n n
E( Q( <ge e.- x Z <gs e . -> P",

sj q ~j= <gs j=1 q e

n
2<gsI~ >qj ) ds) .%

(t nl ng 82 Eo J j-1 - <gs5 , > j z=1<gs,ej>q e [2 ds

0j=1 9

0 as n by dominated convergence theorem.

Thus the integral (2.1) is independent of q and qj.

%,'
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The .proofs of (a) - (e) follow using the usual techniques.

For details see 117].

Q.E.D.

As in the case of a real valued Wiener process, under an

additional condition we can define the integral fO* <f', d''s>
sq*

Definition 2.2 For q > r, + r2 let f:[O,**) x -,- Hq be a

non-anticipative H -valued process such that

I Ell f(s) 112 ds < . (2.2)
o q

Define foo <fsdW > as the mean square limit of ft <f,d >

0s q o s sq
as t - * Then this integral is well defined and has the

properties (a) - (d) of Proposition 2.1 writing instead

of t. Moreover, for all t > 0

E~j It
E('<fs~dWs> IF f% <f5~dW >q a.s.

and (f$ <f' ' t)t 0 is a square integrable martingale

twith increasing process E fO Q(fsfs )ds and a continuous

version on R"

For f e M a stochastic integral of the form (2.1) cannot beQ

L. . . .. .

z:::-
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defined since Wt is not an H Q-valued process. However, we

are still able to define a stochastic integral with the

help of the following lemma.

Lemma 2.1 Let q > r, + r2 and f e M Then there exists a
Q*

sequence (fnn 1 in Mq such that for each t > 0

JEll f(s) - fn (S) 2i ds 0~ as n

Proof Let {e.} i > 1 be a CONS for H and let Pn be the ortho-

gonal projector onto the span of {e1 ,..., e. For each t > 0

by monotone convergence theorem

J Eli fsl Qds = j= f E(<fs,e aQ)ds

and hence for each t > 0

El Pnfs - f 2 ds = Y E(<fse ->)ds 0

0o j=n+l fo ' Q

as n - .

Next for all n > 1 there exists a sequence (n)k 1 of non-

anticipative step processes with values in the range of Pn

(this is the finite dimensional case, see for example Lemma

4.3.2 in Strook and Varadhan 1191 or Lemma 1.1 in Ikeda and
'.%

'I ' I-a

-' - '- '.'.' "'"'.'.-.-."-,- -"-".".'.'-.''- -'. " -*.''. -"-'"' ""'.- "-'- ." -- '": .' ",-.-.-,-'k- -.- .,,-.,,-:
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Watanabe [71)such that for each t > 0

j Ell n(s) - pnfs f ds < k 1,2,...

Define the H Q-valued step process

an(t)(o) = n(t) (w) 0 t< < 'oe f n 1.

Then for all t > 0

fEt an(S - f 2 ds < Ell an(S) - Pnf 2 ds

0 n o n n s

t~s 2 t 2
+ El P d Ell Pn f - f Q[ ds 0

n sl ns - s Q[ ds f n s s
0 0 Q

as n -c o.

Thus we have shown that if f E , for all E > 0 there

exists an H -valued step process a(t,w) such that for each
Q .

t>0

tJEl a (S) f f(S)2 ds < c£14
0.5Q

-- * ." • ' •'" °- ° % " " % . "''. '. • " •. . . "o% % "• '°.". ,''"'.' .°% % % ', '°, °. -. ° .'%" .'-'- -- % % % , °-.
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where

= a t (o) a.s. t. 4 s < tj+ I  j =

- c-

= atn(w)  a.s, s > t n

where 0 - to < t < .. <t n< - and each at. takes values in

a finite dimensional subspace B. of HQ, it is Ft.-measurable

and E)) 1t < for j =

Next for each j=l,...,n let {e ,...k be an orthogonal basis for .
j C

Since H is dense in H we can choose { ,. k such that %

q Q

q

Pj-e 2 < 
-

II€ e lQ 2kj(t ~~t )Ell at 11 2

j j+1- )

Each can be written as ,
t

at (j) = a(co) ej ... + a3t e3

where

El t1at? = E((a )2 . (a< )) <  .

J - j "

S.

Define

cJ c~)=a( ) &¢ + .+ a j (w) 4 ,.( (W) a a3 "'Wk"

k. k

~4 4 A 
.-."
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44

then

Eli a 11 2 < E((a ) 2 (. a 1 ) . <
Sq k i= q

and

El %.2 - I Eli k. . . -
Ell at a. a (e ')1

i Q. i

k.
SE ( l al I e3 - h II1i=1a. 1 IJ

k. . k.
'~{E( (a )2)} eJ I -!121 < E_______

1+ Ij Q.
i=I i=I2(t,~ t)

j + 1

Finally define

* W) t. s < t j
I JJ+I

a*(s,w) =

n( s > t n

which is an element of Mq. Then for each f e hi and c > 0
q Q

there exists a* e MA such that for each t > 0
q

Ell a*(t) - fCt) dt < e

and the existence of the required sequence follows.

Q. E.).

V. -. :

77.1
W'" _ .- "" ... .. . .. ,
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Definition 2.3 Let f e MQ, then from Lemma 2.1 there exists

a sequence of functions {fn)n n in M n for q + r2,

such that for each t > 0

Eli f(s) - fn(s)i ds - 0 as n
0n Q

Then by Proposition 2.1 (d) for each t > 0

t t<f (s)-f m(s) ds >) = Eli fn( f (s)l0

n, m •o

Define for each t > 0 the stochastic 
integral ft<f dW s> as

0 s s Q
the L2 (S)-limit of the Cauchy sequence {f t<f (s),dW s  > Io n s>q 11 V

If in addition f is such that

J Eli f~i s 1 ds <.
0 Q

then the stochastic integral f <f ,dWs> is defined as the .

mean square limit of f t<f s5 dWs > as t - o.

For the sake of completness the main properties 
of the above

integral are summarized in the following:

".-

- ° • ~~~~~~~~. . . .".-. o%% . . . . . .

' . . . " -" " ." . .
'
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Proposition 2.2 Let f, g e MQ. Then

a) If a, b e R and t > 0

<afs +bgsdlVs>Q = a <fsd s >Q +b <gs,di~s>Q  a.s.

b) E( <fs,dWs>O) = 0 all t > 0

tiQ ft2<
c) E( <fs'dWs>Q <gs'dWs>Q) = E J <fs,gs>Q ds

0 0 Q0

tlt 2 > 0

rt ft
d) E(j <f s d1 >Q1) 2 ES 2 ds <

o Q 0  flQ

e) If E f s 11 2 ds < - then {J<fs'dWs>Q'Ft}t 0
0

is a square integrable martingale with corresponding increas-

ing process f ElI f 112 ds and a continuous modification on0 s Q
R+. Moreover for t > 0

E(J <fsdWs> IFt) = <fsds>Q a.s.

and

E(f <fsodil >Q) 2 = E ffjfI ds.
00 f-. .

,i
-

- p. • _ t_ . " " _ " . % . " " . . .. . . , .•. .-.- • - . .. - , .' . ,- . - ," - ,
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The proof follows by the above definition and Proposition

2.1.

V'-Valued Stochastic Integrals.- Let L(4',1') denote the

class of continuous linear operators from V" to 4'. A func-

tion f:[0,-) 9 £2- L(4,',4,') is said to belong to the class

Q(NO 40 ) if f is an Ft-adapted measurable (non-anticipative)

function on [0,-) x P- to L(4' ,4') such that for each t > 0 '.

ft'

E t Q*(O3 f'CO)) ds <- Vy 0 (2.3)':

0

.where f*: 4 1!, is the adjoint of f

Lemma 2.2 Let f e 0Q( ' , 4" ). Then for each t > 0 there

exists q(t,f) ) r, + r2 such that

E It 11 flI 1 H 2l ds= E It hf5  2 H d s < cs O' 11 H sd a<-QH
E0 s  q(tf),Q = o q(tf)

-.'

(2.4)

where a2(Hq(t,fJHQ) denotes the Hilbert space of Hilbert-

Schmidt operators from Hq(tf) to HQ"

Proof For each t > 0 and .b e 4, let

V2 (0) F E Q(f() fs(¢))ds" (2.5)

". -' -• -S . . •.
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Then since f e 0 (u'') for each t > 0 Vt ( )  <,.
Q%

Let 0n € in (, then since f* c L(P,,P) and Q is f-continuous,
S

using Fatou's lemma we have that

t-V() =({E liJ inf Q(fs(n"),s(0n)ds1  2 < 1ir inf Vt(6)

0

which shows that V is a lower semicontinuous function on P.

Then using Lemma 1.2.3 in 120, Page 3861 Vt(0) is a continuous
tt

function on 4, and there exist r(t,f) > 0 and 0(t,f) > 0 such

that

V 2 (0 < 0 (2.6)v2( < o(t,f)21! ll r2~f
t r(tf)

.t%

Next let {OIj > 1 and 1 be as in Section 1. Choose

q(t,f) > r(t,f) + r, and write j = (1 + kj-q(t'f) j 1.

Then {10}j > is a CONS for Hq( t f) and using (2.5) and (2.6)

we have that

tE 2 Q(fs ( f )*( ds V ( .s -5= vt ,
E !j-1~ j=1Vj)

SO(t,f) E I 2E 2 = O(tf)2  1 (1 + X )-(t " '= j (t f) j
-'

0 (t f) 20 < ,

and (2.4) is proved. j
.*g .. -•. ., £1 -. -. -.- -. ...

ft ., -.ft .f..t. .f-.t. .-, ., . .-.f. , . -t. -, . .- .... . . . f.. -t.. .-. . , ....- ...: ..t;
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Proposition 2.3 Let f e 0Q() Then for each t > 0

there exists a 4'-valued clement Yt(f) such that

t "

Y(f)(* =01 <fs(0) 'd'W>Q a.s. ¥ e 4 (2.7)

where the M1S of (2.7) is the stochastic integral of

Definition 2.3. Moreover, for each T > 0 there exists a

positive integer q(To,f) such that Y e Hq(T f) a.s.

for 0 t < To • Yt(f) is called the 4'-valued stochastic

integral of f w.r.t. W and sometimes we will denote it by

t %-

Yt(f )  f fsdWs. (2.8)

Proof Using the notation of the proof of Lemma 2.2, define

Y s<f0 j sQ
t t <(¢ ,ds Q  j 1.:

Then by Proposition 2.2 (d), (2.5) and (2.6)

00 00 C0

(Yt(f)[])~ 2 ) = = E(Y (f2 ,)2 )"0

j=1~ Jj=1~t j=1 t

00

j=i j rtf

Thus I; (Yt (f)f I )2 < a.s.. Let P. { (o: (Yt(f)[ 1(.) "Jj=1 j=1

Thus .en . E f) 0 2

I (Y. ..-..<as. L
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Let {4'.1 be the CONS for 1-q(t,f) dual to (0 ) 1

and define

ziYt(f)[0 I (W) 1j w e l

j=-

it(f)(W) -
0 w4 ,

Then for each t > 0 t(f) e Hq(tf) a.s. forq(t,f) > r(t,f) + ri

and therefore Yt (f) e 4' a.s. .

It remains to prove that satisties (2.7). Let t > 0 and

e 4,, then 0 e Hq(t,f) and

n
Slir x <0,0 > (limit in H, )..)
n q ( it j q(t,f).

n j=1

n
and therefore Vt( E <,>0 - ) " 0 as n

j=1

which implies from (2.5) that

t n n
E Q(f* ( Z <0,0 >q(t0f)j' f*( E >q(tf) j ))d s - 0

J0 s ~m qt~f)j s jtrf

as n.m - . (2.9)

-.° • . . . . • . .. . .... . . . . . . . . . .. .
,. .*.**... ............... .... . '. .. ........ .... ...
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On the other hand, since Pj[¢ = <00 'j>q (t,f) then

y

t (f)[01 = Y f)[O.]i1[¢] = ) Y[(f)lV]< , >q t

Sy t (f)[, I a.s. s t*f)j=l 1 ~ )j"....

n
Thus if g (S) fs( I ' .0 >

jj q(t,f)

A&. .1

rt
Yt(f)[0] = lirn <gn(s),dh 5 >Q a.s.

n- o

and from (2.9) and Definition 2.3 -

<gn(S),dWs> <f*() ,dIVsQ in L'
0 0,M

t'

Thus for each t > 0 Yt(f)[0= <fs(O),dW > a.s. 0 4 r

From now on we write Yt(f) instead of Yt(f).

Q.E.D.

The V'-valued stochastic integral Yt(f) =  fsdW5 has tieo
following properties.

% %'.*"

~' ~ ' 4 . .... 4-

~ *...,** . .. S%

5 5-' '- ". ". ~ 5k. 1 % > .-- 5 . 4 . v-5.**.5% S . .v - .-9.>' "' - - .:,,..v -. -. ,,... .. .'
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Proposition 2.4 Let f,g C 0Q(

a) If ab e IR then for each t > 0

Yt(af+bg) = aYt(f) + bYt(g) a.s.

b) E(Yt(f)[01) = 0 V 0 e t t > 0

C) E(Y(f)[11gt()[f] = E Q(f * s , '

td) El t f) 11 2 -- 2f I sl + ) s <
d) Ell Y t I q(t,f) =E JI! fSta 2(lIQ H _ q(t,f)) ds <

v t > 0, for some q(t,f) > rI + r2

We now extend the definition of Yt(.) to functions which are

integrable in [0,-) x P.. Lemma 2.2 and Proposition 2.4 (d)

suggest that it is enough to construct stochastic integrals

for functions of the form f:[O,*) X 12- G2(HQHr) for T > 0,

similar to the case of a c.B.m. (see (211).

Let r > 0. A function f:[O,*) x f2 - a2(Q,H r) is said to

belong to the class O(HQ- r ) if f is an F t-adapted measura- .

ble function on R +x f2 to o 2 (HQH_r) such that

J i f ' 0 2 (HQ H ds <
0 r

% -'C

L¢-'W
e ~~~~~~~~~~~~~~ ~~~~~. -,W. ,--.'..'.._.......'..-.... .. .--.-.. '. 7* .- - . .. *. -,,-.• .- -- .- --.-- --

" " -- €¢ i 
"  

# ,€ @ . +" 4 # €- i. . ) - , -- ," ' + ' " . . - ++ *. ' . . il -C * , *.+ -

- 1 l + + + - - ' C ' . * % % * + ' . - "
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Proposition 2.5 Let r > r, + r2 and f e 0 (Q 1 r * Then

there exists an Hr-valued element Y(f), called the stochastic

integral for elements in O(IIQH~r) , such that

Y(f)I] = <fs(O),dW > a.s. V 0 e 11
fo s s Q r

where the RHS is the stochastic integral of Definition 2.3.

We sometimes denote this integral by Y(f) = f fs dWs.

It has the following properties: If f,g e O(HQIr)

a) For a,b e R Y(af+bg) aY(f) + bY(g) a.s..

b) E(Y(f)[0 ) = 0 Vt 0 Hr .

c) E(Y(f)[I1Y(g)[#]) = E Qs s r" "(.,0,1 I

d) El yf (f) 11II dfs H , 1,-

Pt
e) If f o= f dWs, then (Yt F ) t > 0 is a 4'-valued

square integrable martingale with an Ir continuous '.

version, for r > ri + r2 %

% % %°

% % . .. **e- .- " " • * ., " d' " % " " . " % - " ' " "" '" " °" " ° " ' ' ? ' " ' ° ° ' -
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3. MULTIPLE WIENER INTEGRALS

Real valued multiple Wiener integrals. Let n > 1,

q > r, + r2 , T = [10,) and denote by Hqo the n-fold tcnsor
q

product of 1!1 with itself. For f c L2(Tn - H en ) define
qq

In(f) <f(), ej ee > [ 3 ejj I I
J, .... in=  n n n

= (ti,....tn) (3.1)

where [ej1 is a CONS in H and each multiple integral in
Sj~ q

RUS of (3.1) is a multiple Wiener integral (m.IV.i) with

dependcnt integrators (W t [e i ... ,W tn [e. 1) of the typc

considered in 131, [4] and [171.

Similar to the stochastic integral (2.1), and using the

nuclearity of4and the properties of Q, it can be shown that

the real valued multiple Wiener integral (3.1) is well de-

fined and its value does not depend on the CONS {e }j > 1

of Ifq or the choice of q. Moreover In(.) is a linear

operator and
I -S

E(Tn(f)) 2 ( n! I .2(Tn on)
•  (3.2)

IQ

For f e L2(Tn -, O1n) a m.W.i. of the form (3.1) cannot be

defined since IV is not an It-valued process. However since
QE°,

eS'

~ -. ' .~. - - ~ • 1. "
.L .Z&
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for all q > r1 + r2  L2(T n  1i oln) is dense in L2(T n n I{ n)

then by (3.2) In (-) has a unique extension to L2(T n ,,&n)

also denoted by In and called the real valued multiple

Wiener integral for elements in L2(T n - Hgn}. It has the

usual properties of the ordinary multiple Wiener integral

of Ito 181. In particular the following is true.

Lemma 3.1.- Let f e L2(Tn n Hn). Then there exists
Q

g C MQ9 E f. [1 g(s) 112ds < such that

(f= <g(s),dls>Q (3.3)no
0

where RHS of (3.3) is the stochastic integral of Definition

2.3

4'-valued multiple Wiener integrals.- Let s > r, + r2 and

U2 (H nH_s) denote the Hilbert space of Hilbert-SchmidtQ
operators from Hon to H_s

.%.

Proposition 3.1 Let f e L2(Tn - o2(O1n , II~)) Then there -9-

exists an I_ s-valued element Y n(f) such that

Yn (f')101 = (f*(O)) a.s. V 0 e H (3.4)

where I n(.) is the real valued m.W.i. defined above. Yn(f)

".*9..-9."*-. : :. :.- . .:..-9..-.. *-*. ...:- ; .. ...---. . .-.....-.. ..,...,.,.,- . ... .9....,, . , , .."

4 €_ ¢A -:........'..-'*"-' -:."- . .:--.-. . "". -.. . ....... .. . .. - . -- % -".%-"-% -
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is called the 10'-valued multiplq Wiener intepril of f.

It is such that

Ell Y (f) 11 1s 4 n! 11 fiL(Tl 2 1 1 f 11 2) (3.5)

Q

The following result is an infinite dimensional analog of

Lemma 6.7.2 in Kallianpur 1111.

Proposition- 3.2. Let n > 1, s > r, + r2 and

f c L 2 (T n _, a2(H2,H_5 ) Then there exists a non-anticipative

02(HQ ,H 5)-valued process h(t,c31) such that

E IIh(t,W)I 2 dt<(3.6)
fo 0 2 (H Q 11 d

and

Y (f h dWt (3.7)
n t

where RIIS in (3.7) is the 40-valued stochastic integral of

Proposition 2.5. ..

Proof By Lemma 3.1 for each 0 e If~ there exists g. EMQ

E(f'11 g. (s) II~ds < coand

Yn (f) [01 f g <,tdl.'>Q Tn(f*( 6 )) 0.s. * (3.8)
0



:--;5.t

Let (ek)k > 1 be a CONS for Hs and define h*(t,w)(ek) -

ge (t,w) k > 1. Then h*(t)(ek) is HQ-valued and belongs
ek

to M Next
Q.

E( A. i h*(t)(ek)t 2)dt = E( < t)

o k=1 k=1 o k

- E(Yn(f)[ek) 2 n! f*(e ) l n  ,on)

k=1 k-1 .Q(,l.-::l

Sn II fL L2(T n _9 02(HQ, H ))

Thus h*(t)(.) - <,ek>s h*(t)(ek) defines an a.s.
k=1

dtdP linear operator from H to t1 Moreover
s Q

h*(tW)e 2(HQI H ) a.s. dtdP and

2 J~t Q .~ ,_.

dt "... .{1~ 0 h~)[ (HQ, H~s .

Then the result follows from Proposition 2.5.

Q. E. 1).

As in the case of a real valued Wiener process, in the next

section we will see how the mW.i. above defined are useful

in studying 4'-valued nonlinear functionals of the 4'-valued

Wiener process W.. ,.

5 • % . . . .* e; , , , , , . • . . . . -• .
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4. .O4-VALUED NONLINEAR FUNCTIONALS

Let F= Fe. By a 4)'-valucd nonlinear functional of I' we

mean a 4)'-valued random element F: S2 V 4' such that F is

Fw + B(V') measurable and E(F[0]) 2 < W c 4). We denote

by L2 (fl ; V') the linear space of all V'-valued nonlinear

functionals. Observe that it is not a Hilbert space.

For r > 0 let L2 (92 - Hr) be the Hilbert space of all

F'W-measurable elements F: E2 - H-r such that E(II F11 2 ) <

The Hilbert space L( Hr) is called the space of
rP

H -valued nonlinear functionals of Wt.-r

Let H = sp {W 01 : 0 e 4', t e TI (closure with respect to

L2(f,FwP)) and Hrfn be its n-fold symmetric tensor prcduct.

Since H is a Gaussian space, it is well known that

L2(1, F9P) - : 0 n®. For s > 0 and n > 1 definen > 0.-

Gn(H )={i e L2(g+H ):i[] Hfen VL€ Hs). (4.1)
n -s -s

The following result is the Wiener decomposition of the space

L 2(fl ; 4)').

Theorem 4.1 The linear space L2 (g2; 4') of #'F-valued non-

linear functionals is a (complete) nuclear space given by the

strict inductive limit of the Iilbert spaces L(2 + .r r > 0'

LK. . z%'*. -'* . N..,!%.-. . - P l" . del



Moreover

L2(c ; (') = im C Z G (H ))
Sn> 0n r

The proof of this theorem is based on the following lemmas.

Lemma 4.1

L~(fl ; 4') = U L2 (nZ - H_ r) . (4.2)
r=Or

Proof Let F e L (I H- ) r > 0. Then F[0,1 is F1 -measurable

r

for all 0 e 4 and E(F[01) r l] 4, Ell l r i.e.

F e L2 (n _ V') and hence

U L 2 (S  H _r) C L(fl ; ')

r=O

Next let F e L2 (fl ; V') and for all 0 e 4) define V2 (4)

E(F[O1)2 . Then V2 (4)

As in the proof of Lemma 2.2 using the continuity of F on 4)

and Fatou's lemma, one can show that V(O) is a lower semi-

continuous function of 4). Then by Lemma 1.2.3 in [20, page

3861, V(O) is a continuous function on 4P and hence there

exist 0 F > 0 and r. > 0 such that

%- . . - - . . .
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V 2 (0) = E(FCO)) 2 < a' r 2 ; 0 (4.3)
F r F

Let r > rF + r,, then the imbedding of Hr into H is a

Hilbert-Schmidt map. Take . + ( j, then { > 1

is a CONS in Hr and

r~ F j1 ) = j v cj%

j=l j=1

2 0(1 +Xj "2(r-rF) < 0e0 < Go
F EFF
j1 rF  j=1 F

;2
where 01 is as in (1.2). Then Z Fl < a.s., and if

{j}j > 1 is the CONS in H_r dual to {€.i. i

j1 0 1 (W) 0 <
P(F(Co) = Z F[I j] (w). < =) = 1

j=1 :

and F e Hr a.s. Moreover,

Eli I11 2 r Z E<F,(l1 )r,.>, = E( Z F[O.1]) < I.
-r j=1 j -r j=1

It remains to show that for each 0 , F[ J = F[I . By using

(4.3) since _m <€ > .r - 0 in Hrj~ J Jm-,* 'r

m mECF[(]0l- F[ jI10 [ ])= 2 E(F[O j l <0,0j>r j

j=l j=l r

2 m- ~ .>j 2 -' 0 as m-:

j11 l jr r
j .•

le'd" P d .__Z '.'= '.-.- , •. . .ro % . ° ". %'. .'% %"-'% %'"''='% ". % ". • -i.'.k' .' ,' . .s ... ,l, ',o~' J.,, Lz-.- .J -1"
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and therefore for each 0 c 4' F[0 = F[0'1 a.s.. Thus if I
F c L2(fl ; 40) there exists r > 0 such that F c L2( -' t1r)

Q.E.D.

The next result is the Wiener decomposition of the space

L 2 (n -* H. It appears in Miyahara [161 for a general
-r

Hilbert space K, i.e. for L2(SI K).

Lemma 4.2 For each r > 0 L2 (2., H_r) = 0 Gn (Hr ) .
nr Q n

Proof of Theorem 4.1 It follows by Lemmas 4.1 and 4.2 and

the fact that L2 (12 ; 1p) is the dual of the Countably hilbert

Nuclear space 0 L2 (S2 _ Hr).
r'0 r

Q.E.D.

Define for n > 1 Gn (4) L L ; 4 4,):n[)1 e n E 4').

The following corollary is shown similar to Theorem 4,1.

I|

Corollary 4.1 For each n > 1 Cn(4 ' ) is a (complete) nuclear

space given by the strict inductive limit of the Hlilbert

spaces Gn (H r) r 0.

Multiple Wiener integral orthogonal expansions.- Let

Sy {g(fn):fn e L'(T n  
02 Q Jnll0,sn

= n,H)) n 0, L 0 O.

[ ', % ,"". ' ""'Z"-"".,'',',*, "' . * ". , - . , . - . .... :.... . ....... . . .... .°
f.'. . -f.,., p . '- . . ', €_" .L " ." . " . ' . -' ' - . -" - - ". ." '. ., - . . ... . . . . .71
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where Y( - ) is the mvWi. of Proposition 3.1. We shall

show that S is a complete set in the space L2 (S,; ').

For r > 0 let Sr be the closed subspace of L2 (f-l lr)

spanned by the multiple Wiener integrals Yn ) of Proposi-

tion 3.1 for elements in L2(Tn o 2 (H Q PH r) i.e.

Sy = sp {Yn(fn) fn L L2(Tn "0 201 Onl r)) n > 1}
f n n 1 }T

where the closure is taken with respect to L2 (r

Although multiple Wiener integrals on a Hilbert space have

been studied before (Miyahara [16]), the following result

was not found in the literature.

Proposition 4 1 For each r > 0

o 2 (EXP(L
2 (T) 0 H), H) Sr

where for g e 02 (EXP(L
2 (T) 0 H ), H r) , g* = (gg ,...)

Q 0~

n * 02(Hr ,(L2 (T) IIQ) n) n > 0

nm

t(g) = 2 Yn(g) (convergence in L 2 (n "' '1r))

n=O

where EXP(L 2 (T) @ FI) = a (L 2 (T) 9 11 e)n

°. ". . .Q.• .-, 0s -- . *. . -& ... .
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Proof Let g e 02(EXP(L 2 (T) 0 HQ)lH) then

9 C0 2(itEXP(L 2(T) 0 H),i.e. frec
*(0 e C ('T 0 11~ g*(O) =(g*(tO),g*(O) .... andg ~ . X(L() QJ 0

0

nil Lj.I ( 2 (T) 0 HQ4 f

2 G4.

We first show that for each n > 0 e E 2(H (L (T) 0 If ).'.-

Let {e I be a CONS in H ,then

Xjg*(e J 2 <@

m= EXP(L (T) 0 H)

and hence

so

Ig*() 21

M=1 EXP(L (T) 6) HQ

T. 2 g*(e 2 < o

n0O m~1 n (L (T) e 1-)

Thus for each n and {eI M ~ 1 a CONS forHT

~ i ~eQj2 < 0
m=1 (L 2 (T) 0 H Q) (~

i~e. g* e o2 (H,(L (T) (0 1 )nn

-6e 
A
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But if g e o2 (EXP(L
2 (T) 0 HQ), H_r

Ell ECg) ' r Ell Yn(gn)i grnwO 02 (EXP(L2 (R+) 0I1Q) ,Hr ).

Then the result follows since g as above is a typical element

in o2 (EXP(L
2 (T) 0 H),H_ r > 0

Q-r

Q.E.D.

The completeness of the multiple Wiener integrals Yn f

f e L2(Tn - , 
2 (H,H r)) in L2(f -+ H_ ) is then obtained.

Q,-

Proposition 4.2 Let r > 0 and F e L2(S-. H r), E(F) = 0. Then
.

F n (fn a.s. (convergence in L2( 412 H
n=1

where fn e L2(Tn * 2 (Hn H r)) n > 1

IN

The above proposition and Theorem 4.1 yield the next result

which gives multiple Wiener integral expansions for 4'"-valued

nonlinear functionals.

Theorem 4.2 Let F e L2 (12 ;40), E(F[])= 0 V L c 4). Then

there exists rp > 0 such that Fe H a.s. and
rF

o.5'

F = Y Cn(f ) a.s. (L 2 (n H_ H )-convergence)
n=1

n2 n nn

where fn e L (Tn 0 2 (, Fir)) H r n >1

. . - - . ...'. _' ,, . . d . ',, " ~*~ *. " " ' . . .



." W' W' R

Stochastic integral representations for 41-valued nonlinear i J

functionals From Proposition 3.2 and Theorem 4.2 one obtains

the following stochastic integral representation for elements

in L2 (f2 ; 4"), This result is the *'-valued analog of Theorem

6.7.1 in Kallianpur [111.

Theorem 4.3 Let F e L (f2; V"), E(F[01) =0 V 0 e 4. Then

there exist rp > 0 and a non-anticipative o 2 (FQDII- )-valuedFO-r Fprocess h with

Eli h(t,w)l 1 dt < .
2 (HQ HQr rF

such that

, -. ".. t %'

F (co) = h(t,w)dWt a.s.

? .-...ji

where the RHS in the last expression is the V'-valued -

stochastic integral of Proposition 2.5 with an H -valued

continuous version.
.,.-....

The last theorem and an application of the Baire category ..- -

theorem (as in Theorem 4.1) yield the following representation

theorem for 40-valued square integrable martingales (see 1171

for details). A 40-valued stochastic process (Xt)t > 0 is ,

said to be a V'-valued square integrable martingale with

respect to an increasing family (Ft)t ; 0 of a-fields if for '

.'.,'.,".."....'."...,,-.. ., . *.2'*. .. . . ... ,. , *. . . .-. . . .... . . . . J ; ; "p
. e ee € , % . . *,*.-..*. .*... ., .... .S . . . -. * " .. .'. .. . . . . " .. '
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each 0 e IV (Xt[(01,Ft)t > 0 is a real valued square integrable

martingale, i.e.

sup E(X [J)<- * e *

Theorem 4.4 Let (Xt,F ), X0 = 0, be a 4"-valued square

integrable martingale. Then there exists r > 0 such that

Xt has an H. r continuous version Xt given by the 41-valued

stochastic integral

t¢

Xt{) 3 h(s,w)d W5  a.s. (4.4)

for every t • 0, where h(t,c) is nonanticipative, o2(HQ'i-rx"

- valued and

2ll h(t,)dt< °a~~U(HQP H - x d <_'

where RIIS of (4.4) is the 40-valued stochastic integral of

Proposition 2.5.
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